- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Barry, Cornelius S. (1)
-
Fan, Pengxiang (1)
-
Fiesel, Paul D (1)
-
Fiesel, Paul D. (1)
-
Hart, Jaynee E (1)
-
Jones, A Daniel (1)
-
Kerwin, Rachel E (1)
-
Last, Robert L (1)
-
Last, Robert L. (1)
-
Lou, Yann-Ru (1)
-
Parks, Hannah M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis,SlASAT1-LIKE(SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence thatASAT1-Larose through duplication of its paralog,ASAT1, and was trichome-expressed before acquiring root-specific expression in theSolanumgenus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.more » « less
-
Fiesel, Paul D.; Parks, Hannah M.; Last, Robert L.; Barry, Cornelius S. (, Natural Product Reports)Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids. In contrast, specialized metabolites, historically termed secondary metabolites, are structurally diverse, exhibit lineage-specific distribution and provide selective advantage to host species to facilitate reproduction and environmental adaptation. Due to their potent bioactivities, plant specialized metabolites attract considerable attention for use as flavorings, fragrances, pharmaceuticals, and bio-pesticides. The Solanaceae (Nightshade family) consists of approximately 2700 species and includes crops of significant economic, cultural, and scientific importance: these include potato, tomato, pepper, eggplant, tobacco, and petunia. The Solanaceae has emerged as a model family for studying the biochemical evolution of plant specialized metabolism and multiple examples exist of lineage-specific metabolites that influence the senses and physiology of commensal and harmful organisms, including humans. These include, alcohols, phenylpropanoids, and carotenoids that contribute to fruit aroma and color in tomato (fruity), glandular trichome-derived terpenoids and acylsugars that contribute to plant defense (stinky & sticky, respectively), capsaicinoids in chilli-peppers that influence seed dispersal (spicy), and steroidal glycoalkaloids (bitter) from Solanum, nicotine (addictive) from tobacco, as well as tropane alkaloids (deadly) from Deadly Nightshade that deter herbivory. Advances in genomics and metabolomics, coupled with the adoption of comparative phylogenetic approaches, resulted in deeper knowledge of the biosynthesis and evolution of these metabolites. This review highlights recent progress in this area and outlines opportunities for – and challenges of-developing a more comprehensive understanding of Solanaceae metabolism.more » « less
An official website of the United States government
